Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cell Res ; 31(12): 1263-1274, 2021 12.
Article in English | MEDLINE | ID: covidwho-1414176

ABSTRACT

Sphingosine-1-phosphate (S1P) is an important bioactive lipid molecule in cell membrane metabolism and binds to G protein-coupled S1P receptors (S1PRs) to regulate embryonic development, physiological homeostasis, and pathogenic processes in various organs. S1PRs are lipid-sensing receptors and are therapeutic targets for drug development, including potential treatment of COVID-19. Herein, we present five cryo-electron microscopy structures of S1PRs bound to diverse drug agonists and the heterotrimeric Gi protein. Our structural and functional assays demonstrate the different binding modes of chemically distinct agonists of S1PRs, reveal the mechanical switch that activates these receptors, and provide a framework for understanding ligand selectivity and G protein coupling.


Subject(s)
Sphingosine-1-Phosphate Receptors/agonists , Azetidines/chemistry , Azetidines/metabolism , Benzyl Compounds/chemistry , Benzyl Compounds/metabolism , Cryoelectron Microscopy , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Structure, Quaternary , Signal Transduction , Sphingosine-1-Phosphate Receptors/genetics , Sphingosine-1-Phosphate Receptors/metabolism
2.
Clin Exp Pharmacol Physiol ; 48(5): 637-650, 2021 May.
Article in English | MEDLINE | ID: covidwho-1075748

ABSTRACT

Global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing. Before an effective vaccine is available, the development of potential treatments for resultant coronavirus disease 2019 (COVID-19) is crucial. One of the disease hallmarks is hyper-inflammatory responses, which usually leads to a severe lung disease. Patients with COVID-19 also frequently suffer from neurological symptoms such as acute diffuse encephalomyelitis, brain injury and psychiatric complications. The metabolic pathway of sphingosine-1-phosphate (S1P) is a dynamic regulator of various cell types and disease processes, including the nervous system. It has been demonstrated that S1P and its metabolic enzymes, regulating neuroinflammation and neurogenesis, exhibit important functions during viral infection. S1P receptor 1 (S1PR1) analogues including AAL-R and RP-002 inhibit pathophysiological responses at the early stage of H1N1 virus infection and then play a protective role. Fingolimod (FTY720) is an S1P receptor modulator and is being tested for treating COVID-19. Our review provides an overview of SARS-CoV-2 infection and critical role of the SphK-S1P-SIPR pathway in invasion of SARS-CoV-2 infection, particularly in the central nervous system (CNS). This may help design therapeutic strategies based on the S1P-mediated signal transduction, and the adjuvant therapeutic effects of S1P analogues to limit or prevent the interaction between the host and SARS-CoV-2, block the spread of the SARS-CoV-2, and consequently treat related complications in the CNS.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , COVID-19/pathology , SARS-CoV-2 , Sphingosine-1-Phosphate Receptors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Antiviral Agents/pharmacology , Humans , Sphingosine 1 Phosphate Receptor Modulators/pharmacology , Sphingosine-1-Phosphate Receptors/genetics , COVID-19 Drug Treatment
3.
EBioMedicine ; 58: 102898, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-665940

ABSTRACT

BACKGROUND: One-third of all deaths in hospitals are caused by sepsis. Despite its demonstrated prevalence and high case fatality rate, antibiotics remain the only target-oriented treatment option currently available. Starting from results showing that low-dose anthracyclines protect against sepsis in mice, we sought to find new causative treatment options to improve sepsis outcomes. METHODS: Sepsis was induced in mice, and different treatment options were evaluated regarding cytokine and biomarker expression, lung epithelial cell permeability, autophagy induction, and survival benefit. Results were validated in cell culture experiments and correlated with patient samples. FINDINGS: Effective low-dose epirubicin treatment resulted in substantial downregulation of the sphingosine 1-phosphate (S1P) degrading enzyme S1P lyase (SPL). Consequent accumulation and secretion of S1P in lung parenchyma cells stimulated the S1P-receptor type 3 (S1PR3) and mitogen-activated protein kinases p38 and ERK, reducing tissue damage via increased disease tolerance. The protective effects of SPL inhibition were absent in S1PR3 deficient mice. Sepsis patients showed increased expression of SPL, stable expression of S1PR3, and increased levels of mucin-1 and surfactant protein D as indicators of lung damage. INTERPRETATION: Our work highlights a tissue-protective effect of SPL inhibition in sepsis due to activation of the S1P/S1PR3 axis and implies that SPL inhibitors and S1PR3 agonists might be potential therapeutics to protect against sepsis by increasing disease tolerance against infections. FUNDING: This study was supported by the Center for Sepsis Control and Care (CSCC), the German Research Foundation (DFG), RTG 1715 (to M. H. G. and I. R.) and the National Institutes of Health, Grant R01GM043880 (to S. S.).


Subject(s)
Aldehyde-Lyases/metabolism , Epirubicin/administration & dosage , Sepsis/drug therapy , Sphingosine-1-Phosphate Receptors/metabolism , Animals , Autophagy , Cell Membrane Permeability , Cells, Cultured , Disease Models, Animal , Down-Regulation , Epirubicin/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Mice , Mucin-1/metabolism , Prospective Studies , Pulmonary Surfactant-Associated Protein D/metabolism , Random Allocation , Sepsis/etiology , Sepsis/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Treatment Outcome , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL